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ABSTRACT: Natural rubber (NR) blends are widely used in many industries because of their excellent integrated properties. However,

a simple, easily operational, nondestructive, and accurate method for their quantitative analysis remains as a challenge. This has been

always an important issue in the related industries, particularly for their daily quality control tests. One main reason is that NR ingre-

dients vary according to their geographical origin and the harvest time, which renders it hard to set up a versatile analytical protocol

for all NRs. Another reason is owing to the defects of the established methods themselves as having been revealed in those relying on

TGA, Py-GC/MS, FTIR, and ATR-FTIR. In this study, a simple and feasible method based on near infrared spectroscopy combined

with chemometric is proposed to solve this problem for the first time. NR/SBR (styrene-butadiene rubber) rubber blend, the most

widely used NR blend, is selected as a typical research subject. Spectral calibration region, factor, and several different pretreatment

methods are applied on the spectra data to optimize calibration models. The result shows the optimized calibration model provides a

good accuracy (0.135 wt %), intraday precision (0.121 wt %) and interday precision (0.132 wt %) for 3 months. VC 2014 Wiley Periodi-

cals, Inc. J. Appl. Polym. Sci. 2015, 132, 41423.
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INTRODUCTION

Rubber blends, usually multicomponents, are widely used in

mechanics, electronics, chemical engineering, and new materials

industries to obtain desirable physical and mechanical proper-

ties, processability, and durability, while neither component of

the blends can supply.1–5 The properties of rubber blends are

sensitive to slight variation in the amounts of their each compo-

nent.6–9 It is therefore very important to control and to exam-

ine their composition for quality control.

To this end, a variety of analytical protocols have been devel-

oped to monitor rubber blend composition, such as TGA,9–16

Py-GC/MS,8,9,17,18 FTIR,8,12,19 and ATR-FTIR.6 However, sample

preparation and testing are usually sophisticated and time-

consuming, and the samples are destroyed through the testing

in most of these methods, excluding the test by ATR-FTIR.

However, the accuracy and precision in these methods are

closely dependent on the homogeneity of the sample to be

tested, which is an uneasy task. Other challenges to have reliable

and accurate results are related to the instrumentation itself, the

limited sampling amount, for instance. Allowed sampling

amount in TGA and Py-GC/MS tests is usually limited to

10 mg, and so are those allowed in FTIR and ATR-FTIR test-

ing20–22 owing to the limited diameter of the testing ray (usually

<0.1 mm for ATR-FTIR) and the low penetration depth

(usually <0.1 mm for both FTIR and ATR-FTIR).

Near infrared spectroscopy (NIR) is a fast, nondestructive and

nonpollutant quantitative method with good accuracy and pre-

cision. Because the absorptivities of vibrational overtone and

combination bands in NIR region are orders of magnitude

lower than that of vibrational fundamental bands in infrared

region, this can greatly increase penetration depth23 (usually

from 5 to 10 mm), and improve the accuracy and precision of

the results. NIR has been used for quantitative analysis for

plastic24–27 and single synthetic rubber,23,28,29 and SBR (styrene-

butadiene rubber)/NBR (acrylonitrile-butadiene rubber) as

well.6

However, up to date, little work has been reported on NIR anal-

ysis towards natural rubber (NR) blend. It is obvious that NR is

quite different from synthetic rubber, simply composed of a

group of homologues. NR, being a natural product, is natural

complex. Besides polyisoprene, the main composition, it con-

tains commonly protein, aliphatic acid, water, polysaccharide,
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sterol, and other minor components. Functional groups as

CAH, NAH, and OAH adherent to the components are known

to have their absorption in NIR region. It will greatly reduce

the accuracy and precision of NIR in determination of polyiso-

prene content. However, the ingredients of NR vary according

to the geographical origin and harvest time, which affect the

availability and robustness of NIR.

The main aim of this study is to investigate the feasibility of

NIR for accurate quantitative analysis for NR blends regardless

of their geographical origin and harvest time of the NR. The

technique is further applied for analysis of a blend of NR with

SBR, the most widely used rubber blend.30–36 The availability of

NIR quantitative analysis of rubber blend for a wide range of

percentage content (0–100%, the interval is 10%) has been

revealed in the literature, but the reported accuracy (2%) is not

very desirable.6 Nevertheless, little work has been devoted to

small percentage content. As mentioned above, it is very impor-

tant to inspect the small variation of individual rubber content

in several industries where the reliability is particularly impor-

tant, such as spaceflight, aviation, and medical instrument.

Therefore, this study mainly focus on accurate determination of

low SBR content (0–5%) in NR/SBR rubber blends.

EXPERIMENTAL

Materials

Standard Malaysia Rubber (SMR20), Standard Thailand Rubber

(STR20), and Standard Indonesia Rubber (SIR10) were selected

as raw materials in this study. SBR1500 is a random copolymer

with a styrene content of 23.5%. All the samples were kindly

supplied by Entry-Exit Inspection and Quarantine Bureau of

Shandong Province (EEIQB). Each NR sample lot has five sam-

ples with different harvest time, collected from different import

corporations by EEIQB from March 2011 to April 2013.

Sample Preparation and Grouping

For sample preparation, NR was mixed with SBR in a mixing

mill. To guarantee the uniformity and parameter accuracy of

the rubber blends, following approaches were taken. First, each

NR was mixed with the SBR into premixed rubber sample at

90/10 level. Second, each premixed rubber sample was mixed

with respective NR at 50/50, 45/55, 40/60, 35/65, 30/70, 25/75,

20/80, 15/85, 10/90, and 5/95 levels. A flow chart of sample

preparation method is shown in Scheme 1. The resulting sam-

ples are NR/SBR rubber blends with SBR contents of 5.0, 4.5,

4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, and 0.5 wt %. The control group

was not mixed with the SBR, following the same mixing pro-

cess. Therefore, there are three different NR (SMR, STR, and

SIR) at eleven different levels (the control group can be

regarded as 0/100 levels), result in 33 (3 3 11) groups of rubber

blends. Each group has five samples. The five samples have

same geographical origin and SBR content but different harvest

time. Then four samples were randomly selected from the five

samples of each group to establish a calibration set, while the

rest were used to establish a validation set. Overall, there are

132 samples included in the calibration set and 33 samples

included in the validation set. This grouping procedure ensured

the calibration algorithm derived can ignore geographical origin

and harvest time variations of NR, meanwhile; it ensured the

representativeness of the validation set.

Equipment and Procedures

NIR spectra were acquired using a Thermo Antaris II FT-NIR

spectrometer (Thermo Scientific) equipped with a spinner cup.

The spinner cup was used to enlarge the effective sampling area

to 829 mm2 [p(25 mm)2 2 p(19 mm)2] (The sketch is shown

in Figure 1). Density of rubber blend is commonly between

0.92 and 1.00 mg/mm3, the effective sampling amount in NIR

test can reach 3813.4 mg (829 mm2 3 5 mm 3 0.92 mg/mm3)

at least, thus it make the accuracy and precision increase greatly.

Each sample was scanned 32 times using integrating sphere

reflectance. Before the test, to eliminate instrument drift, back-

ground corresponding to an accumulation of 32 scans was

scanned. Spectral scanning region was from 4000 to

10,000 cm21 with resolution of 8 cm21. Moreover, TQ Analyst

(version 8.0, Thermo Scientific) chemometric software was

employed to construct calibration curves and perform data

pretreatment.

Infrared spectra were recorded using Spectrum 400 spectrometer

(Perkin–Elmer) equipped with a diamond crystal, using 16

scans acquired at 4 cm21 resolution in the range of 4000–

600 cm21. Omnic (version 8.0, Thermo Scientific) software was

employed to calculate peak area of the infrared spectra.

Data Analysis

Partial least squares (PLS) method was used for data calibration.

Furthermore, spectral modeling region and several pretreatment

methods were investigated to find an optimal calibration model.

The pretreatment methods include multiplicative scatter correc-

tion (MSC),37 standard normal variate (SNV),38 first derivative

(first), second derivative (second), and Norris Derivativ

smoothing39 (the number of data points per segment is 11 while

the gap between segments is 5). In addition, full leave-one-out

Scheme 1. Flow chart of sample preparation method.

Figure 1. Scanning area of IR method (Left) and NIR method (Right).
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cross validation method and the validation set were used to

evaluate models. The evaluation parameters include correlation

coefficient of calibration set (RC), correlation coefficient of vali-

dation set (RP), correlation coefficient of cross validation (Rv),

root mean square error of calibration (RMSEC), root mean

square error of prediction (RMSEP), root mean squares error of

cross validation (RMSECV) and prediction residual error sum

of squares (PRESS). The RMSECV and PRESS were computed

as:

RMSECV5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i51 ðyi2ŷiÞ

2

n

s
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i51
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2
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where, yi is the reference component concentration; ŷi is the

predicted component concentration; n is the number of spectra

in the calibration set; and m the number of spectra in the vali-

dation set. Moreover, the relativity40 between wavenumber of

the spectra and sample identity was studied to find a suitable

spectral region for calibration. It was computed as:
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where, x is absorbance vector corresponding to wavenumber; y

is concentration vector of target parameter; n is the number of

spectra in the calibration set; j 5 1, 2, . . . ,m; and m the total

number of the wavenumber.

RESULTS AND DISCUSSION

Raw Spectra

Figure 2 shows raw near infrared spectra of some typical rubber

blend samples. It can be seen that all the spectra look similar

with respect to spectral band location and intensity. Since the

main ingredient of NR is polyisoprene constituted by repeating

unit [ACH2C(CH3)@CHCH2A] and protein, there are mainly

CAH and NAH overtones and combinations absorption peaks

in the spectra. The absorption peaks include 8314 cm21 corre-

sponding to methyl CAH stretching second-overtone vibration,

8516 cm21 corresponding to olefinic @CAH stretching second-

overtone vibration absorption peak, 7201 cm21 corresponding

to combinations of methyl CAH fundamental stretching vibra-

tion and methyl CAH fundamental bending vibration,

5831 cm21 corresponding to methyl CAH stretching first-

overtone vibration, 6337 cm21 corresponding to NAH stretch-

ing first-overtone vibration, and 4597 cm21 corresponding to

NAH bending second-overtone vibration.41 The complexity of

this overlap demands multivariate calibration techniques such

as PLS regression to correlate the spectra and component con-

centration. In addition, as depicted in Figure 2, there are no

obvious anomalies, noises and over absorption phenomena in

all the spectra, so all the spectra can be used for calibration and

validation.

Principal component analysis (PCA), a more elaborate method

to compare spectra data,42 was used to compare the data of cal-

ibration and validation sets. Figure 3 shows a score plot set up

from the first and second principal components of calibration

and validation sets. Data input into the PCA method were spec-

tra which are pretreated by MSC combined with second deriva-

tive smoothing. It can be seen from the PCA plot that the

calibration and validation data are similar, which in turn pro-

vides a level of confidence that the calibration model will be

able to predict component concentrations accurately in the vali-

dation set.

Spectral Modeling Regions Selection

Spectral modeling regions have great impact on the perform-

ance of calibration model. If the selected regions are too narrow,

some effective information can be missed, and thus makes the

applicability reduced. Otherwise, excessive noise information

will be introduced, which will affect the accuracy. Figure 4

shows the relativity between each wavenumber of the spectra

and concentration information. Regions for which the correla-

tion coefficient is almost equal to one indicate a good correla-

tion between the spectral absorbance and the sample identity.43

It is noted that regions from 4000 to 9000 cm21 have high cor-

relation coefficients, while that from 9000 to 10,000 cm21 are

mostly <0.3.

Figure 2. Raw NIR spectra of 18 typical rubber blend samples. [Color

figure can be viewed in the online issue, which is available at wileyonline

library.com.]

Figure 3. Principal component score plots of calibration set (�) and vali-

dation set (1).
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In addition, differential treatment combined with smoothing,

which can amplify the signal difference and make effective

information easily to identify, can also be used as an effective

tool for determining spectral modeling regions.44,45 Figure 5

shows some typical spectra of Malaysia, Thailand, and Indonesia

rubber blends with SBR content of 2.5 wt %. These spectra

were pretreated by first derivative combined with smoothing

(Left) and by second derivative combined with smoothing

(Right). It is noted that the spectral information is concentrated

in the regions from 4000 to 9000 cm21, while regions from

9000 to 10,000 cm21 are mainly for noise. Consequently,

regions from 4000 to 9000 cm21 were selected for PLS calcula-

tion finally.

Factor Selection

Factor is one of the most important indexes for NIR calibration

model.44 In a certain degree, the higher the Factor, the more

effective information can be extracted from the spectra. But if

the Factor is too high, too much noise information may be

brought into the calibration model, causing overfitting, thus

greatly reduce the accuracy of model. The optimal Factor is

usually judged by PRESS and RMSECV.43 In ideal conditions,

with Factor increases, PRESS and RMSECV reduce quickly and

then increase slowly. The Factor corresponding to the inflection

point is optimal. But in actual conditions, PRESS and RMSECV

are often against the rule. This is because sample homogeneity,

sampling conditions, signal intensity, and spectral pretreatment

methods are always different, result in differences in extracting

effective information from the spectra. However, models, which

meet the rule, indicate that the representativeness of samples,

sampling condition, and spectra data pretreatment methods are

satisfactory.

Figure 6 shows the correlation between PRESS, RMSECV, and

Factor of five typical models, which are established by raw spec-

tra, by first, by MSC, by SNV and by MSC combined with sec-

ond smoothing. It is observed that the change trends of PRESS

and RMSECV are same, which indicated that the validation set

is representative. Furthermore, it can be seen that the inflection

points of the five models appeared at 9, 5, 12, 13, and 5. They

can be used as the optimal Factor. Moreover, the models estab-

lished by raw spectra, by first and by MSC combined with sec-

ond smoothing generally meet the rule. But the models

established by MSC and by SNV appeared glaring abnormal ris-

ing when the Factor are equal to 4 and 5, respectively. They do

not obey the rule apparently. The results indicated using raw

spectra or using MSC (or SNV) combined with differential

smoothing to pretreat spectra data are desirable in the given

application. However, using MSC or SNV alone to pretreat

spectra data are not very desirable.

However, PRESS and RMSECV reduced abnormally when the

Factor of the models established by raw spectra and by MSC

combined with second smoothing are equal to 12 and 8, respec-

tively. Differently, PRESS and RMSECV raised abnormally when

Figure 4. Relativity between each wavenumber of NIR spectra and concentration information. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 5. Spectra of Malaysia, Thailand, Indonesia rubber blends with SBR content of 2.5 wt %, which are preprocessed by first derivative combined

with smoothing (left) and by second derivative combined with smoothing (right). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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the Factor of the model established by first smoothing is equal

to 6. This phenomenon can also be seen in several litera-

tures.40,46,47 The reason for that could not be found, but may

be able to find by mathematical study of PLS.

Results of Calibration Models

Table I lists performance of the models established by different

pretreatment methods. The optimal model was chosen accord-

ing to a low RMSEP and RMSECV, a low number of Factor,

and a high Rc and RP. As depicted in Table I, the model estab-

lished by raw spectra represents poor performance. Although Rc

and RP are all higher than 0.97, RMSEP and RMSECV (key

parameters to evaluate model) are 0.392 and 0.501, respectively,

which indicted that the accuracy of the model is poor. The rea-

son may come from two aspects. First, the highest SBR content

of all the rubber blend samples is only 5 wt %, so the spectral

signal is relatively weak. Second, there are baseline drift and

light scattering problems in the spectra data of rubber blends

(common problems for solid samples), which make it difficulty

to extract effective information from the spectra data.

Derivative pretreatment can remove baseline drift and amplify

signal differences. Judging from the result, although effective

signals are amplified (embodies that the Factor reduced from 9

to 5), which is helpful to the model, the accuracy of these mod-

els are worse than that of the model established by raw spectra.

Figure 6. PRESS and RMSECV versus Factor of models pretreated by raw spectra (a), by first derivative (b), by MSC (c), by SNV (d), and by MSC com-

bined with second derivative smoothing (e).

ARTICLE WILEYONLINELIBRARY.COM/APP

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2015, DOI: 10.1002/APP.4142341423 (5 of 8)

http://onlinelibrary.wiley.com/
http://www.materialsviews.com/


This is because when effective signal was amplified by derivative

pretreatment, noise was also amplified. Although noise can be

reduced by smoothing to a certain extent, which can improve

the performance of the model (it is more obvious for second,

the RMSEP decreased from 1.22 to 0.435 and the RMSECV

decreased from 0.969 to 0.494), the accuracy is still worse than

that of the model established by raw spectra.

MSC and SNV pretreatment can reduce light scattering of solid

samples, which can improve model performances. Table I shows

the performance of the models established by MSC or by SNV

are better than that of the model established by raw spectra.

Take the model established by MSC for example, the RMSEP

and RMSECV reached 0.121 and 0.119, respectively. The results

demonstrated light scattering is the main reason influencing the

model performances.

When MSC (or SNV) and derivative smoothing are combined

to use, the resulting RMSEP and RMSECV are worse than that

of the models established by MSC (or SNV) alone. However, it

is required to attention that the Factor (another key parameter

to evaluate model) reduces from 12 (13 for SNV) to 5, which

indicate that the robustness of models improved greatly. More-

over, the RMSEP (0.135 wt %) and RMSECV (0.162 wt %) are

close to that of the model established by MSC or SNV alone.

This difference is acceptable for industry inspection. As we have

discussed above, the Factor of the model established by MSC or

SNV alone, appears abnormal rising at 4. It may lead to a

potential risk of bad robustness. Therefore, MSC combined with

second smoothing was selected as the optimal spectral pretreat-

ment method ultimately.

Evaluation of the Optimal Calibration Model

Figure 7 shows linear correlation regression plots of calculated

versus actual of the calibration model established by MSC com-

bined with second smoothing and that of full leave-one-out

cross validation. It can be seen that all the plots are uniformly

distributed in the alignment of both sides, the RC, RP, RMSEC,

RMSEP, and RMSECV are 0.9965, 0.9963, 0.132, 0.135, and

0.162%, respectively, which indicated that both linearity and

prediction accuracy are satisfactory. The accuracy result

0.135 wt % is better than that of TGA (2–4 wt %), Py-GC/MS

Table I. Results of Calibration Models Established by Different Pretreatment Methods

Pretreatment method Rc RMSEC/wt % RP RMSEP/wt % RMSECV/wt % Factor

Raw spectra 0.9735 0.364 0.9705 0.392 0.501 9

First 0.9728 0.366 0.9519 0.508 0.540 5

Second 0.9999 0.027 0.6855 1.22 0.969 9

First 1 smoothing 0.9697 0.386 0.9621 0.461 0.497 5

Second1 smoothing 0.9721 0.371 0.9665 0.435 0.494 5

SNV 0.9989 0.074 0.9972 0.120 0.120 13

MSC 0.9989 0.076 0.9972 0.121 0.119 12

SNV 1 first 1 smoothing 0.9964 0.135 0.9966 0.132 0.171 5

MSC 1 first 1 smoothing 0.9961 0.140 0.9966 0.131 0.179 5

SNV 1 second 1 smoothing 0.9965 0.132 0.9963 0.136 0.160 5

MSC 1 second 1 smoothing 0.9965 0.132 0.9963 0.135 0.162 5

Figure 7. Linear correlation regression plots of calculated versus actual SBR content in rubber blends of calibration model (left) and cross validation

model (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(1–2 wt %), FTIR (2–3 wt %), and ATR-FTIR (3–4 wt %),

which have been reported in the literatures.6,8,12

Intraday and Interday Precision of NIR Method

Considering the complexity and instability of NR composition,

all validation set samples were measured three times every seven

days by the optimal calibration model during three months.

Then standard deviations between the predicted values and the

reference value (calculated by the known weights ratio of raw

material) of one day (intraday) precision and all days (interday)

precision were calculated. The purpose is to evaluate the robust-

ness of the optimal calibration model. The result shows averages

of all the standard deviations are 0.121 wt % for intraday and

0.132 wt % for interday, which indicated a good robustness.

Predicted Result of NIR and FTIR for Validation Samples

Several literatures6,9,13 have revealed that FTIR is a useful ana-

lytical protocol for quantitative analysis of rubber blends. In

this study, FTIR method was used for comparing with NIR

method. Figure 8 shows raw infrared spectra of three typical

rubber blend samples whose SBR content are 0, 2.5, and 5.0%.

The peak 1376 cm21 corresponds to methyl CAH stretching

vibration and the peak 700 cm21 corresponds to CAH stretch-

ing vibration of benzene ring. The SBR content of NR/SBR

blends can be determined from the peak areas ratio of the

peaks at 700 and 1376 cm21, which correspond to NR and

SBR, respectively.9 Figure 9 shows a plot of 700/1376 peak

area ratio versus SBR content, which yielded an equation

y 5 0.0435x 1 0.0176 with R2 5 0.9934. The amounts of SBR in

10 typical validation samples whose SBR content range from 0.5

to 5.0%, were then determined by NIR method and FTIR

method. The results are listed in Table II. It can be seen in Table

II that the accuracy of NIR is generally better than that of

FTIR.

CONCLUSIONS

The results obtained in this work indicate that NIR spectros-

copy, in conjunction with multivariate calibration, can allow a

fast, nondestructive, accurate quantitative analysis of NR blends

regardless of geographical origin and harvest time of the NR. By

appropriately choosing model parameters, one can accurately

determine low rubber content in NR blends with good accuracy

and precision. The test result is close to that of the existing

methods such as TGA, Py-GC/MS, FTIR, and ATR-FTIR.

Figure 8. Raw infrared spectra of three typical rubber blend samples

whose SBR content are 0, 2.5, and 5.0%. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Plot of 700/1376 peak area ratio versus SBR content in NR/SBR

blends.

Table II. Predicted SBR Content in NR/SBR for Validation Samples

FTIR NIR

Sample Calculated SBR (%) Measured (%) Bias (%) Measured (%) Bias (%)

1# 0.5 0.20 20.30 0.54 0.04

2# 1.0 0.73 20.27 1.02 0.02

3# 1.5 2.33 0.83 1.61 0.11

4# 2.0 2.58 0.58 2.07 0.07

5# 2.5 2.92 0.42 2.60 0.10

6# 3.0 3.07 0.07 3.07 0.07

7# 3.5 3.46 20.04 3.32 20.18

8# 4.0 3.80 20.20 3.89 20.11

9# 4.5 4.41 20.09 4.36 20.14

10# 5.0 4.87 20.13 5.02 0.02
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Because of the rather limited range in the quantity and sources

of the original samples, it is emphasized that further work in

this area is to improve the method robustness, using a wider

range of samples.
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